
Principal Components
 Suppose we have a data matrix, X, of n independent samples and 

p features. The sample covariance matrix of X is S.
 Principal components will find p linear combinations of the features 

which are orthogonal (independent) of each other and are ranked 
by variance, so the first principal component will have the largest 
variance and so on.

 If the features different dramatically in scale then it would be best 
to center and scale the raw data, e.g. 𝑧𝑧𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖−�̅�𝑥𝑖𝑖

𝑠𝑠𝑖𝑖
. The principal 

components from the centered and scaled data will be different 
then the unscaled data. There is no simple transformation.

 Thus, the first principal component is 𝑌𝑌1 = 𝑎𝑎11𝑋𝑋1 + ⋯+ 𝑎𝑎𝑝𝑝1𝑋𝑋𝑝𝑝 = 𝒂𝒂1𝑇𝑇𝒙𝒙
 The 𝑉𝑉𝑎𝑎𝑉𝑉 𝑌𝑌1 = 𝒂𝒂1𝑇𝑇𝑺𝑺𝒂𝒂1



Principal Components

 We want to find a1 such that Var(Y1) it has the largest variance of 
all normalized linear compounds that satisfies 𝒂𝒂1𝑇𝑇𝒂𝒂1 = 1.

 Due to the constraint finding the maximum is a little more difficult 
but can be done with Lagrange multipliers. 

 Skipping the details, the Lagrange multipliers results in p
simultaneous equations, 𝑆𝑆 − 𝑙𝑙1𝑰𝑰 𝒂𝒂1 = 0, where l1 is the Lagrange 
multiplier.

 The only way for this to not have a trivial solution is if, 𝑑𝑑𝑑𝑑𝑑𝑑(
)

𝑆𝑆 −
𝑙𝑙1𝑰𝑰 = 𝟎𝟎

 This means that l1 is the characteristic root (eigenvalue) of S and 
a1 is its associated characteristic vector (eigenvector). 



Principal Components
 If we pre-multiply 𝑆𝑆 − 𝑙𝑙1𝑰𝑰 𝒂𝒂1 = 0 by 𝒂𝒂1𝑇𝑇we get,

𝒂𝒂1𝑇𝑇 𝑆𝑆 − 𝑙𝑙1𝑰𝑰 𝒂𝒂1 = 0
𝒂𝒂1𝑇𝑇𝑆𝑆𝒂𝒂1 − 𝒂𝒂1𝑇𝑇𝑙𝑙1𝑰𝑰𝒂𝒂1 = 𝒂𝒂1𝑇𝑇𝑆𝑆𝒂𝒂1 − 𝑙𝑙1 = 0
𝑙𝑙1 = 𝒂𝒂1𝑇𝑇𝑺𝑺𝒂𝒂1 = 𝑉𝑉𝑎𝑎𝑉𝑉(𝑌𝑌1)

 Since the first principal component should have the largest 
variance then l1 should be the largest eigenvalue out of p possible 
eigenvalues.

 The second principal component satisfies, 𝒂𝒂2𝑇𝑇𝒂𝒂2 = 1, and 𝒂𝒂1𝑇𝑇𝒂𝒂2 = 0
 The second principal component is the second largest eigenvalue of 

S and so on.
 It is also the case that 𝑙𝑙1 + ⋯+ 𝑙𝑙𝑝𝑝 = 𝑑𝑑𝑉𝑉𝑺𝑺
 So, if we divide the variance of each principal component by the 

total variance it will equal the proportion of the total variance.



Principal Components, examples

 When p>>n, the model can be simplified by using the first, second 
and additional principal components as single features. 

 However, since each principal component is a linear combination of 
all p features you haven’t really removed potentially irrelevant 
features.

In these figures n=50, and p=45.
In the left figure all 45 features
contribute to the response, while 
in the right figure only 2 do. 

The x-axis is the number of principal
components used in the regression
model.



Supervised Principal Components

 To get details see chapter 18 of “The elements of statistical 
learning” or Blair et at. 2007. JASA 101:119.

 This technique is designed for the p>n case.
 We don’t want to use all the features only those that are correlated 

with the outcomes, hence the supervision.
 The technique was originally designed for survival data. However, 

it can be used with normal regression problems.
 The program can be run with the “superpc” package written by 

Blair and Tibshirani.
 For a reasonably good tutorial go to

http://statweb.stanford.edu/~tibs/superpc/tutorial.html

http://statweb.stanford.edu/%7Etibs/superpc/tutorial.html


Supervised Principal Components

 Algorithm
1. Compute the standardized univariate regression coefficients 
(

�𝛽𝛽𝑖𝑖
�𝜎𝜎 𝑣𝑣𝑖𝑖

, where vj is jth diagonal of (XTX)-1) for the outcome as a 

function of each feature.
2. For each value of the threshold θ from the list 0 ≤ 𝜃𝜃1 <. . < 𝜃𝜃𝐾𝐾:
(a) Form a reduced data matrix consisting of only those features 
whose univariate coefficient exceeds θ in absolute value, and
compute the first m (1-3) principal components of this matrix.
(b) Use these principal components in a regression model to 
predict the outcome.
3. Pick θ (and m) by cross-validation.



Example: Supervised Principal Components

 We use a simulated pooled genomic allele frequency database. In 
this database loci 1-30 have some effect on a phenotype, loci 31-
40 show the same level of allele frequency differentiation as loci 1-
30 but have NO effect on the phenotype and loci 41-2000 show 
random variation between populations and also do not affect the 
phenotype.

 There are a total of 40 populations (so n=40 and p=2000).
 Before doing this analysis, we remove loci by testing for allele 

frequency differences and using a false discovery rate of 5%.
 With this database the pre-filtering reduced p to 43.



Example: Supervised Principal Components

Populations

In this simulated database the allele
frequency variation among 40 populations
is shown in (a). Allele frequencies for 4 
groups of 10 populations are marked with
a red “x”.

These are the population mean allele
frequencies. The database shows
binomial sampling variation about these
means.

x

x
x

x



Example: Supervised Principal Components
 Data was randomly divided into a training set of 32 populations 

and a test set of 8 populations.
 After training the data we choose the threshold value (𝜃𝜃𝑖𝑖) 6.49 

from the graph below.
 Thus, only features with

standardized regression
coefficients greater than 6.49 will
be included to compute PC’s.

 Only the first
principal component is
shown.

 The test statistic is from a 
likelihood ratio test.



Example: Supervised Principal Components
 We can test the significance of the first three principal components.
sim401.train<- superpc.train(data.train, type="regression")
sim401.cv<-superpc.cv(sim401.train, data.train,n.components = 2) #From this determine threshold
sim401.fit<- superpc.predict(sim401.train, data.train, data.test, threshold=6.49, n.components=3, 
prediction.type="continuous") #Predict test data response with threshold and 3 PC’s

> superpc.fit.to.outcome(sim401.train, data.test, sim401.fit$v.pred)# Test fit of test data with 
each PC

Call:
lm(formula = data.test$y ~ ., data = temp.list)

Residuals:
1          2          3          4          5          6          7          8 

4.291e-03 -2.465e-05 -8.364e-03  6.712e-03 -3.558e-05  4.458e-03 -3.632e-03 -3.405e-03 

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)  0.699444   0.003362 208.056  3.2e-09 ***
score.1      0.988445   0.013528  73.065  2.1e-07 ***
score.2      0.811663   0.198431   4.090    0.015 *  
score.3     -0.295224   0.168617  -1.751    0.155    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.006672 on 4 degrees of freedom
Multiple R-squared:  0.9993, Adjusted R-squared:  0.9987 
F-statistic:  1849 on 3 and 4 DF,  p-value: 9.736e-07



Example: Supervised Principal Components
Results
Importance-score Raw-score Name
0.843 8.101 feature10
0.83 8.55 feature16
0.83 7.151 feature27
0.825 7.83 feature26
0.817 6.858 feature36
0.815 8.604 feature17
0.813 7.961 feature23
0.813 9.309 feature11
0.813 7.83 feature32
0.809 9.299 feature30
0.805 8.409 feature3
0.802 8.067 feature1
0.792 7.873 feature5
0.79 8.469 feature21
0.783 9.207 feature7
0.779 8.302 feature4
0.777 7.335 feature38
0.775 7.479 feature34
0.77 8.463 feature37
0.769 8.01 feature31
0.767 8.651 feature18
0.766 8.854 feature14
0.757 8.746 feature28
0.755 8.664 feature15
0.75 8.315 feature8
0.744 6.826 feature9
0.743 7.393 feature33
0.743 7.613 feature40
0.742 8.598 feature2

0.738 7.757 feature24
0.734 8.419 feature22
0.731 7.03 feature35
0.723 8.508 feature12
0.72 7.723 feature29
0.718 7.553 feature19
0.714 7.698 feature6
0.7 7.192 feature25
0.683 7.109 feature20
0.657 7.377 feature13

The input list included all these plus #’s 39, 453, and 1560
Thus, supervised principal components was only able to 
eliminate three loci and it included almost all of the non-
causative loci (in bold). These results were based on only the first 
principal component.



FLAM (fused Lasso additive model)
 Apply FLAM to the same artificial database yielding the following 

sparse list.
FLAM 50% criteria Frequency/100
feature1 73
feature2 100
feature4 98
feature6 90
feature7 89
feature8 85
feature11 95
feature12 71
feature14 98
feature16 80
feature17 70
feature21 90
feature22 79
feature26 94
feature27 72
feature28 92
feature30 97
feature32 76



Partial Least Squares
 This technique can be used for dimension reduction like principal 

component regression.
 Up to p new directions are created which are linear functions of the 

original features.
 Unlike principal components the new directions are based on X and 

y not just X like principal components.
 In principal components we chose each one to maximize the 

variance of the first , then second and so on. Partial least squares 
chooses directions (e.g. vectors that are linear combinations of the 
features) that have a high variance and high correlation with the 
outcomes (y).

 Partial least squares software  can be found in the “pls” R-package.
 The detailed algorithm is on page 81 of the Elements book.



Partial Least Squares Algorithm

 Preliminaries
 Inner product, < 𝑥𝑥,𝑦𝑦 > = 𝑥𝑥𝑇𝑇𝑦𝑦 = ∑𝑖𝑖=1

𝑝𝑝 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖
 Linear regression with a single feature and no intercept yields a 

least squares estimate of, �̂�𝛽 = <𝑥𝑥,𝑦𝑦>
<𝑥𝑥,𝑥𝑥>

.

 If the feature has been centered and scaled then,

𝑥𝑥𝑇𝑇𝑥𝑥 = �𝑥𝑥𝑖𝑖2 = 𝑣𝑣𝑎𝑎𝑉𝑉 𝑥𝑥 = 1



Partial Least Squares Algorithm

 We seek M new orthogonal coordinates, 𝑍𝑍1,𝑍𝑍2, . . ,𝑍𝑍𝑀𝑀 ,𝑀𝑀 < 𝑝𝑝 that are 
related to the original coordinates as, 𝑍𝑍𝑚𝑚 = ∑𝑖𝑖=1

𝑝𝑝 𝜑𝜑𝑖𝑖𝑚𝑚𝑋𝑋𝑖𝑖 .

 1. Center and scale the features. Start by computing �𝜑𝜑1𝑖𝑖 = < 𝑥𝑥𝑖𝑖 ,𝑦𝑦 >
for each j. 

 2. From 1. construct the first direction, 𝑧𝑧1 = ∑𝑖𝑖 �𝜑𝜑1𝑖𝑖𝑥𝑥𝑖𝑖. This is the first 
coordinate and its inputs are weighted by the strength of their 
univariate effect on y. 

 3. The features then have to be orthogonalized relative to z1 and 
the process is then repeated.



FLAM
 Fussed Lasso Additive Model
 Assume n-responses, 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛. At one feature (j) assume the 

ordered values are xj1, …, xjn.
 The regression model is 𝐸𝐸 𝑝𝑝𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝜃𝜃𝑖𝑖
 The D matrix inside of the l1 norm encourages adjacent parameters 

to be zero, e.g. �𝜃𝜃𝑖𝑖−1 − �𝜃𝜃𝑖𝑖 = 0. Knots (jumps) will only appear if the 
reduce the sum of squares.

x1 x2 x3

θ1=θ2<θ3θ1

θ3



FLAM
 The full minimization problem has a “group lasso” although it uses 

an l2 norm that encourages discarding whole loci.
 Pj is a permutation matrix which orders the xj from least to 

greatest.
 The tuning parameters λ and α have to be chosen from a grid. 

Luckily there is a finite value for λ above which the results are 
completely sparse. α ranges from 0 to 1.

 If the outcomes, y, vary widely in magnitude consider a 
transformation like log(y). Since the test MSE determines the 
model parameters, very small y may have a minor effect on the 
final model.



FLAM minimization details

 There are three numerical methods for finding the minimum of the 
FLAM objective function.

 One method, “BCD” or block coordinate descent will reveal several 
equivalent minima but simply permuting the order of the columns 
of the feature matrix.

 If this permutation is done, say 100 times, then features can be 
ranked by how often they are found in the sparse set.

 The number of causative SNPs can be improved by taking all that 
appear in the sparse list at least 50% as often as the most 
common SNP.

 This is referred to as the 50% rule. 



FLAM: Example

 One simulated database with 40 populations.
 The patterns are shown in panel (c) below.
 FLAM is in the “flam” package.
 After initial filtering, FLAM was run 100 times 

on permuted genetic databases.
 From the sparse list using the 50% rule, 

FLAM was run on just those features after the 
best α was determined.

 The final results was,
best.FLAM<-
flamCV(sparse.gen,pheno.data,alpha=0.4,n.fold=5,seed=1,met
hod="BCD")



FLAM: Example
> summary(best.FLAM)
Call: 
flamCV(x = sparse.gen, y = pheno.data, alpha = 0.4, 
method = "BCD", 

n.fold = 5, seed = 1)

FLAM was fit using the tuning parameters:

lambda: 1.713 1.559 1.419 1.292 1.176 1.071 0.975 0.887 
0.808 0.735 0.669 0.609 0.555 0.505 0.46 0.418 0.381 
0.347 0.316 0.287 0.261 0.238 0.217 0.197 0.18 0.163 
0.149 0.135 0.123 0.112 0.102 0.093 0.085 0.077 0.07 
0.064 0.058 0.053 0.048 0.044 0.04 0.036 0.033 0.03 
0.027 0.025 0.023 0.021 0.019 0.017

alpha: 0.4

Cross-validation with K=5 folds was used to choose 
lambda.
Lambda was chosen to be the largest value with CV error 
within one standard error of the minimum CV error. 
Best.FLAM$index.cv is the index corresponding to the 
best model.

The chosen lambda was 0.044.
This corresponds to 7 predictors having non-sparse fits.
The predictors with non-sparse fits:
1 3 5 6 7 8 14

plot(best.FLAM)



FLAM: Example

plot(best.FLAM$flam.out,best.FLAM$index.cv)
5= gene 7
6= gene 8
7= gene 10
8= gene 13
14= gene 27

best.predict<- cbind(pheno.data,best.FLAM$flam.out$y.hat.mat[best.FLAM$index.cv,])
best.predict<- as.data.frame(best.predict)
colnames(best.predict)<- c("Observed","Predicted")
library(ggplot2)
ggplot(best.predict,aes(Observed,Predicted))+geom_point()
+ylab("Predicted Phenotype")+xlab("Observed Phenotype")+geom_abline()



Feature Assessment and Multiple Testing
 Problem: determine if there are significant differences in the mean 

feature value between two groups.
 If p>>n then this involves multiple hypothesis tests.
 If the type-I error (the chance of rejecting the null hypothesis 

when true) is 5% then we expect to have many type-I errors when 
p is very large.

 A family wise error rate (FWER) controls the type-I error on a 
collection of hypothesis tests.

 If we do a total of M hypothesis tests with a type-I error rate of α, 
then the chance that any of the M tests results in a type-I error is, 
(1-(1-α)M)=FWER. If there is positive dependence between the 
tests then FWER will be smaller.

 See chapter 13 of James et al. (2022).



False Discovery Rate

 From table 18.5 we can estimate the false discovery rate (FDR) as 
E(V/R)



Methods to control family-wise error rates

 Bonferroni inequality. Suppose we want a FWER of αFWER. Then 
we want αFWER to equal the chance that we falsely reject just one of 
m different hypothesis tests each carried out with a type-I error of 
�𝛼𝛼. Then no matter what the relationship is among the m tests,
αFWER ≤ ∑𝑖𝑖=1𝑚𝑚 �𝛼𝛼 = 𝑚𝑚 �𝛼𝛼.

 Thus, if we want a FWER of 0.05, then each individual test, �𝛼𝛼, must 
be set to 0.05/m. 



Holm’s step down procedure

 This method is less conservative and thus should have greater 
power.

 Algorithm:
1. Fix the false discovery rate at α and let 𝑝𝑝(1) ≤ 𝑝𝑝 2 ≤ ⋯ ≤ 𝑝𝑝(𝑀𝑀)
denote the ordered p-values.
2. Define 𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑗𝑗: 𝑝𝑝(𝑖𝑖) > 𝛼𝛼

𝑀𝑀+1−𝑖𝑖
3. Reject all hypotheses for which 𝑝𝑝𝑖𝑖 ≤ 𝑝𝑝(𝐿𝐿), the Holm rejection 
threshold.



Comparison of Bonferroni and Holm’s step-down

By rejecting the 
hypotheses between the 
black and blue line, the 
Holm step-down method 
is displaying greater 
power than the 
Bonferroni method.



Benjamini and Hockberg Method

 See, 1995, J. Royal Stat. Soc. Series B 85: 289-300.
 Algorithm:

1. Fix the false discovery rate at α and let 𝑝𝑝(1) ≤ 𝑝𝑝 2 ≤ ⋯ ≤ 𝑝𝑝(𝑀𝑀)
denote the ordered p-values.
2. Define 𝐿𝐿 = 𝑚𝑚𝑎𝑎𝑥𝑥 𝑗𝑗: 𝑝𝑝(𝑖𝑖) < 𝛼𝛼 � 𝑖𝑖

𝑀𝑀
3. Reject all hypotheses for which 𝑝𝑝𝑖𝑖 ≤ 𝑝𝑝(𝐿𝐿), the BH rejection 
threshold.



Benjamini and Hockberg Method

The BH threshold is 0.00012.
The Bonferroni with α=0.15
is 0.000012, an order of 
magnitude smaller.



Feature Assessment and Multiple Testing
To test each feature for significant differences
first calculate a t-statistic, 𝑑𝑑𝑖𝑖 =

�̅�𝑥2𝑖𝑖−�̅�𝑥1𝑖𝑖
𝑠𝑠𝑠𝑠𝑖𝑖

, where in

general, �̅�𝑥𝑙𝑙𝑖𝑖 = ∑𝑖𝑖∈𝐶𝐶𝑙𝑙 𝑥𝑥𝑖𝑖𝑖𝑖/𝑁𝑁𝑙𝑙, where Cl are the 
indices of group l with sample size Nl.

The standard error is calculated as,

𝑠𝑠𝑑𝑑𝑖𝑖 = �𝜎𝜎𝑖𝑖
1
𝑁𝑁1

+
1
𝑁𝑁2

�𝜎𝜎𝑖𝑖
2 =

1
𝑁𝑁1 + 𝑁𝑁2 − 2 �

𝑖𝑖∈𝐶𝐶1

𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥1𝑖𝑖
2 + �

𝑖𝑖∈𝐶𝐶2

𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥2𝑖𝑖
2

We can approximate the distribution using a
t-distribution or make a permutation distribution.



Permutation Distribution
 Here we permute the labels of the features many times and for 

each permutation compute the t-statistics.
 In theory we could look at all possible permutations. So, the 

number of different ways to sample labels for group 1 are 𝐾𝐾 =
𝑁𝑁1 + 𝑁𝑁2
𝑁𝑁1

. Thus, for permutation k, the t-statistic is 𝑑𝑑𝑖𝑖𝑘𝑘, then the p-

value for feature-j is 𝑝𝑝𝑖𝑖 = 1
𝐾𝐾
∑𝑘𝑘=1𝐾𝐾 𝐼𝐼 𝑑𝑑𝑖𝑖𝑘𝑘 > 𝑑𝑑𝑖𝑖 . If the features are very 

similar then the calculation for 𝑝𝑝𝑖𝑖 can be summed over all features 
to get a better average.

 The Bonferroni method can give a FWER of ≤ 𝛼𝛼 by simply dividing 
the individual error rate, α, by the number of tests. However, this 
can be overly conservation for large numbers of tests.



Plug-in estimate of false discovery rate
 Algorithm:

1. Create K permutations of the data, producing t-statistics 𝑑𝑑𝑖𝑖𝑘𝑘 for 
features j=1, …,M and permutations k=1,…, K.
2.  For a range of values of the cut-point C, let
𝑅𝑅𝑜𝑜𝑜𝑜𝑠𝑠 = ∑𝑖𝑖=1𝑀𝑀 𝐼𝐼 𝑑𝑑𝑖𝑖 > 𝐶𝐶 , �𝐸𝐸(𝑉𝑉) = 1

𝐾𝐾
∑𝑖𝑖=1𝑀𝑀 ∑𝑘𝑘=1𝐾𝐾 𝐼𝐼 𝑑𝑑𝑖𝑖𝑘𝑘 > 𝐶𝐶

recall that R is the total number of observed significant tests and V is the 
number of falsely declared significant tests. 
3. Estimate the FDR by �𝐹𝐹𝐹𝐹𝑅𝑅 = �𝐸𝐸(𝑉𝑉)/𝑅𝑅𝑜𝑜𝑜𝑜𝑠𝑠

 For the microarray data the BH threshold was for t=4.101. If we use as 
the cut-point, Robs=11, and �𝐸𝐸(𝑉𝑉) = 1.518, thus �𝐹𝐹𝐹𝐹𝑅𝑅 = 0.14

 Thus, to make the FDR=0.15, by the plug in we would need to decrease 
the cut-point to < 4.101

 The plug in method rejects a greater number of hypotheses while 
controlling the same error rate, which leads to greater power (Storey, 
2002, J. Roy Soc. Stat. B 64: 479.


	Principal Components
	Principal Components
	Principal Components
	Principal Components, examples
	Supervised Principal Components
	Supervised Principal Components
	Example: Supervised Principal Components
	Example: Supervised Principal Components
	Example: Supervised Principal Components
	Example: Supervised Principal Components
	Example: Supervised Principal Components
	FLAM (fused Lasso additive model)
	Partial Least Squares
	Partial Least Squares Algorithm
	Partial Least Squares Algorithm
	FLAM
	FLAM
	FLAM minimization details
	FLAM: Example
	FLAM: Example
	FLAM: Example
	Feature Assessment and Multiple Testing
	False Discovery Rate
	Methods to control family-wise error rates
	Holm’s step down procedure
	Comparison of Bonferroni and Holm’s step-down
	Benjamini and Hockberg Method
	Benjamini and Hockberg Method
	Feature Assessment and Multiple Testing
	Permutation Distribution
	Plug-in estimate of false discovery rate

